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Abstract. In this paper we investigate the phase behaviour of a ‘simple’ fluid confined to a slit
of nanoscopic width sz by chemically decorated, plane-parallel substrates consisting of slabs of
weakly and strongly adsorbing solid which alternate in the x-direction with period sx . In the y-
direction the substrates, occupying the half-spaces −∞ � z � −sz/2 and sz/2 � z � ∞, are
translationally invariant. On account of the interplay between confinement (i.e., sz) and chemical
decoration, three fluid phases are thermodynamically permissible, namely (inhomogeneous) gaslike
and liquidlike phases and ‘bridge phases’ consisting of high(er)-density fluid over the ‘strong’ part
which alternates in the x-direction with low(er)-density fluid over the ‘weak’ part of the substrate.
In the x–y plane the two are separated by an interface. Because of their lateral inhomogeneity,
bridge phases can be exposed to a shear strain αsx (0 � α � 1

2 ) by misaligning the substrates
in the x-direction. Depending on the thermodynamic state of the confined fluid and details of the
chemical decoration, shear-induced first-order phase transitions are feasible during which a bridge
phase may be transformed into either a gaslike (evaporation) or a liquidlike phase (condensation).
These phase transitions are studied by computing phase diagrams as functions of αsx for a mean-
field lattice-gas model. The lattice-gas calculations are amended by grand canonical ensemble
Monte Carlo simulations of a fluid confined between chemically decorated substrate surfaces.
The combination of the two sets of data reveals that the lattice-gas model captures correctly key
characteristics of shear-induced first-order phase transitions in this rather complex system despite
its mean-field character.

1. Introduction

In recent years a wealth of novel technologies have been devised by means of which solid
surfaces can be decorated with geometrical or chemical structures in a controlled manner [1–6].
These structures are stable and can be fabricated on µm to nm length scales. Here we are
concerned with chemically patterned substrates where the endowment of solid surfaces with
such a pattern can be achieved by lithographic methods [2, 4] or wet chemical etching [1].
Microcontact printing is yet another method. Here one uses elastomer stamps and, in
certain cases, subsequent wet chemical etching to imprint chemical structures on substrate
surfaces [7–9].

Chemically decorated solid substrates play an important rôle in a variety of technologically
important applications. One of these is in the field of ‘microfluidics’ [10, 11] where one
modifies the wetting characteristics of an underlying substrate along chemical ‘lanes’, say, so
that small portions of liquid can be transported through these lanes and across the substrate
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without spilling. At a different part of the substrate the fluid may then be analysed or subjected
to chemical reactions [10, 11]. It is conceivable that if one endows a solid substrate with an
integrated network of chemical nanostructures, these may function as chemical chips or minute
chemical factories [11]. Another realization of a chemically decorated solid is the so-called
‘Janus bead’ which is a spherical colloidal particle with one hemisphere hydrophilic, the other
one being hydrophobic [12, 13]. Along the equator the two portions have a rather sharp and
well-defined junction. Janus beads can be considered as amphiphilic solids with a stabilizing
effect on oil–water interfaces [12].

These examples may suffice to explain why there is also a still-increasing theoretical
interest in the behaviour of soft condensed matter near chemically decorated solid substrates
(see [14, 15] for recent reviews). From a theoretical perspective two key features of these
systems have to be realized. First, the presence of any (planar) substrate breaks the symmetry
and the system is no longer translationally invariant in all three spatial dimensions. This gives
rise to surface-induced phase transitions, so-called wetting transitions which may be first or
second order. At a first-order wetting transition the thickness of a fluid film adsorbed on a solid
substrate diverges spontaneously at a temperature Tw < Tx upon approaching bulk liquid–gas
coexistence if the fluid wets the substrate (Tx: bulk coexistence temperature) (see [16–20] for
reviews of wetting transitions at chemically homogeneous substrates). Second, nanoscopic
chemical decoration of a substrate introduces new length scales in addition to the range of
interactions among fluid molecules. These length scales are set by geometry and size of the
chemical pattern and have an impact on both the wetting characteristics and the density profile
of the adsorbed fluid as was recently demonstrated by Bauer and Dietrich on the basis of
density functional calculations [21]. Details do, of course, depend on the chemical pattern
imprinted on the substrate, the respective strength of the fluid–substrate interactions with the
different substrate parts, and, last but not least, the chemical nature of the fluid wetting the
substrate [22–26].

If the chemical pattern is not nanoscopic but on a µm length scale, one may employ
phenomenological or square-gradient approaches [27–33] to study the morphology of liquids
wetting chemically patterned substrates [31–33]. Consider, for example, a chemically striped
substrate domain where the stripes are wetted by a liquid. Lipowsky et al showed that if one
deposits a small amount of liquid on such a substrate it forms homogeneous channels over
the stripes at first, eventually undergoing a transition to a ‘bulge state’ (see figure 5 in [34]), a
morphology which was also observed experimentally using optical microscopy [27].

If the fluid is not interacting with just a single chemically decorated substrate but confined
by two of them to spaces of microscopic or mesoscopic dimensions, confinement to such a
nanoscopic slit adds an additional length scale to the problem. In general, the phase behaviour
of a confined fluid differs markedly from that of its bulk counterpart even in cases where
the substrates are composed of just a single atomic species (i.e., chemically homogeneous
substrates) in that the coexistence curve µ

lg
x (T ) is shifted to lower chemical potentials and the

critical temperature appears to be depressed with respect to the bulk. These effects have been
investigated in depth experimentally [35–40] and theoretically [41–48].

If, on the other hand, the confining substrates are planar but decorated with alternating
strips of weakly and strongly adsorbing solid, Röcken and Tarazona were the first to point out
that, in addition to liquid–gas coexistence, so-called ‘bridge phases’ may form as a third phase
coexisting with either one of the other two or with both of them simultaneously (at a triple
point) [49]. A bridge phase consists of two parts: a high(er)-density fluid spanning the space
between the strongly adsorbing (and perfectly aligned) substrates and a low(er)-density fluid
stabilized by its weakly adsorbing parts; the two density regimes are connected through an
interface perpendicular to the confining (planar) substrates. The interface bears a resemblance
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to the one at bulk liquid–gas coexistence [50]. Thus, bridge phases are inhomogeneous in the
direction perpendicular to the interface. In the direction perpendicular to the substrate plane the
high(er)-density portion of a bridge phase is stratified; that is, molecules arrange themselves
in individual layers parallel with that plane. Coexistence between gaslike, liquidlike, and
bridge phases depends crucially on the chemical corrugation of the decorated substrate—that
is, on the relative widths of its weakly and strongly adsorbing parts [51, 52]. By virtue of the
geometry of the substrates and the inhomogeneity of bridge phases, the latter can be exposed
to shear strains by misaligning the former.

In a parallel publication [53] we explore the stress–strain relationship in fluids confined
by chemically striped substrates and address the issue of thermodynamic stability. Within
the framework of a mean-field lattice-gas model we also studied shear-strain-induced phase
transitions between gaslike, liquidlike, and bridge phases [54]. The mean-field lattice gas is
quite useful in this respect because it permits one to determine the phase diagram even for
complex model systems at very little computational expense. However, it is not per se obvious
that it is sufficiently realistic to capture all the subtleties of phase behaviour of confined fluids
exposed to shear strain by, say, chemically decorated substrate surfaces. Therefore, it seems
interesting to investigate in depth the reliability of the lattice-gas model by comparing its
predictions with grand canonical ensemble Monte Carlo simulations for a related but more
realistic model.

This paper, devoted to such an endeavour, is organized as follows. In section 2 we
introduce the mean-field lattice-gas model of a fluid confined between chemically striped
substrate surfaces and discuss the numerical procedure used to calculate its phase diagram.
The corresponding continuous model is introduced in section 3. Section 4 is devoted to a
presentation of results obtained for the two models with particular emphasis on the impact of
shear strain. The paper ends in section 5 with a summary and a brief discussion of our main
findings.

2. Mean-field lattice-gas model

2.1. Thermodynamics

For studying the phase behaviour in thermodynamically open systems, the grand potential �
is a key quantity. In an inhomogeneous confined fluid, whose thermodynamic state may be
specified conveniently by chemical potential µ and temperature T , �[ρ(r)] is a functional of
the local density ρ(r). For fixed T and µ the thermodynamically stable phase is characterized
by that ρ(r) which minimizes �. Thus, ρ(r) is a solution of the variational equation

δ�[ρ(r)]

δρ(r)
= 0 µ, T = constant (1)

which may be solved at minimum computational expense by employing a lattice-gas model
where

�[ρ(r)] = F[ρ(r)] +
∑

r

{�(r) − µ}ρ(r). (2)

In (2), �(r) is the fluid–substrate potential and r is a site on a simple cubic lattice of nx×ny×nz

nodes. Periodic boundary conditions are applied in the x- and y-directions. At mean-field
level the (intrinsic) free-energy functional F is given by

F =
∑

r

(
−εff

2

∑
r′

′
ρ(r)ρ(r′) + kBT

{
ρ(r) ln ρ(r) + [1 − ρ(r)] ln[1 − ρ(r)]

})
= U − T S (3)
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as detailed in the appendix where kB is Boltzmann’s constant, εff determines the strength of
the fluid–fluid interaction, U and S are internal energy and entropy (functionals), respectively,
and the sum on r′ extends over the (six) nearest-neighbour lattice sites of r, signified by the
prime attached to the summation sign.

Various confinement scenarios are realized through different choices for �(r). In all
cases the lattice gas is confined by two parallel substrates in the x–y plane (see figure 1). Each
substrate is composed of different chemical species located in the ranges 1 � x � ns and
ns < x � nx (z = 1, nz) whose interaction with the lattice gas is strongly (coupling constant
εfs) or weakly (coupling constant εfw) attractive, respectively (see figure 1). The substrates may
be misaligned in the x-direction which is effected by shifting the strongly attractive portion of
the upper substrate by �nx lattice sites in the +x-direction. Thus, it is convenient to introduce
a parameter α := �nx/nx to specify the misalignment of the substrates quantitatively where
{α|0 � α � αmax}. If nx is even, αmax = 1/2, whereas αmax = (nx − 1)/2nx if nx is an odd
number. If α = 0 the substrates are ‘in registry’, i.e. strongly and weakly attractive portions of
the two substrates are exactly opposite each other; α = αmax if the misalignment is maximum
(i.e., the substrates are ‘out of registry’). This reflects the fact that only discrete values of α can
be realized because of the discrete nature of the lattice. Thus, α is a measure of shear strain
imposed on the confined lattice gas, affecting its phase behaviour via �(r) = �[1](r)+�[2](r)

(see (2)) where

�[1](r) ≡ �[1](x, z) =


∞ z < 1{

−εfs 1 � x � ns

−εfw ns < x � nx

}
z = 1

0 z > 1

(4)

nz

n
x

n
s

n
w

g �nx

Figure 1. A schematic diagram of the lattice-gas model of a fluid confined between chemically
corrugated substrates in the x–z plane. Each molecule (black circle) interacts with its nearest
neighbours (grey circles). The two remaining nearest neighbours on the simple cubic lattice
located at lattice sites in the translationally invariant y-direction perpendicular to the plane of
the paper are not shown. Sites at which a lattice-gas molecule is subject to the substrate interaction
�[k](r) = −εfs are shaded in dark grey (strongly attractive substrate portions, width ns) whereas
sites at which �[k](r) = −εfw (weakly attractive substrate portions, width nx − ns) are shaded in
lighter grey (see (5), (4)). In the x-direction, periodic boundary conditions are applied (see the text).
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represents the interaction with the lower substrate. Likewise

�[2](r) ≡ �[2](x, z) =
{

�[1](x − αnx, z) αnx < x � nx

�[1](x − nx(α + 1), z) 0 < x � αnx

(5)

specifies the interaction with the upper substrate where the lattice sites are restricted to
{(x, z)|1 � x � nx, 1 � z � nz}.

A special limiting case of the present model is the bulk lattice gas for which �[k](r) ≡ 0
and consequently ρ(r) ≡ ρ becomes nonlocal. Solutions of (1) are then distributed in the
µ–T plane according to

µ = kBT ln

(
ρ

1 − ρ

)
− 6εffρ (6)

from which the bulk phase diagram, characterized by a critical point, can easily be determined
analytically [55]. A straightforward calculation yields µc = −3, Tc = 3

2 , and ρc = 1
2 for

the critical chemical potential, temperature, and density, respectively. Here and henceforth we
employ dimensionless units—that is, energies are given in units of εff , temperatures in units
of εff/kB, and lengths in units of the lattice constant �lg as far as the lattice gas is concerned
(see also section 4.1.2). From (6) it is also easy to verify [55] that the critical exponent β = 1

2 ,
as expected for a mean-field theory (see [56]).

2.2. Numerical procedure

To solve the variational expression (1) subject to (2)–(4) we use the Jacobi–Newton iteration
technique [57], proceeding iteratively in an alternating sequence of ‘local’ and ‘global’ min-
imization steps. Let ρj

i (r) be the local density at r in the ith local and j th global minimization
step. A local estimate for the corresponding minimum value �

j

i is obtained via Newton’s
method:

ρ
j

i+1(r) = ρ
j

i (r) − f [ρj

i (r)]

f ′[ρj

i (r)]
i = 0, 1, 2, . . . (7)

where from (2) and (3)

f [ρ(r)] ≡ δ�[ρ(r)]

δρ(r)
= −kBT ln

ρ(r)

1 − ρ(r)
+ εff

∑
r′

′
ρ(r′) + µ +

2∑
k=1

�[k](r) (8)

f ′[ρ(r)] = − kBT

ρ(r)[1 − ρ(r)]
. (9)

In (9), f ′(x) = df (x)/dx. It is important to realize that throughout each local minimization
cycle, {ρ(r′)} are maintained at the initial values assigned at the beginning of that cycle for all
r. The iterative solution of (7) is halted if maxr |ρj

i+1(r) − ρ
j

i (r)| � 10−7 which is achieved
in approximately 2–3 iterations. Local minimization is performed by visiting each lattice site
consecutively; the local cycle ends once all sites have been considered.

‘Global’ minimization then involves updating the local density of the entire lattice acc-
ording to ρ

j+1
0 (r) = ρ

j

i+1(r), thus providing new initial values for the next local minimization
cycle (by setting j + 1 → j and returning to (7)). Global minimization is carried out until
maxr |ρj+1

0 (r) − ρ
j

0 (r)| � 10−7 which is achieved in roughly 100 steps.
To initiate the Newton–Jacobi iteration, suitable starting conditions have to be provided.

Since (1) will generally have three structurally different solutions ρ(r) (see figure 2(a),
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Figure 2. Local density ρ(x, z) for a confined lattice at T = 1.0, µ = −3.036 58. The substrates
are characterized by nx = 14, nz = 7, nw = 8, ns = 6, εfw = 0.4, and εfs = 1.4: (a) bridge phase
(α = 0); (b) bridge phase (α = 5

14 ); (c) gaslike phase (α = 1
2 ); (d) liquidlike phase (α = 1

2 ). The
plots in (c) and (d) correspond to coexisting phases (see figure 9, later). Two periods of ρ(x, z) in
the x-direction are shown because of the periodicity of the lattice (see section 2.1).

figure 2(c), figure 2(d)), it proves sensible in practice to start from (see figure 1)

ρ0
0 (r) =



ρ init
l = 0.95 ∀r

ρ init
b =


0.95


1 � x � ns z = 1

1 + αnx � x � ns + αnx z = nz

1 + αnx � x � ns 2 � z � nz − 1
0.05 otherwise

ρ init
g = 0.05 ∀r

(10)

because 0 � ρ(r) � 1 (periodic boundary conditions!). After convergence of the Jacobi–
Newton iteration, the grand potentials for gaslike (�g[ρg(r)]; see figure 2(c)), liquidlike
(�l[ρl(r)]; see figure 2(d)), and so-called ‘bridge phases’ (�b[ρb(r)]; see figure 2(a)) will
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Figure 2. (Continued)

differ in general. We emphasize that in our terminology ‘bridge phase’ refers to the entire
morphology illustrated by the plot in figure 2(a). Consequently, the term ‘bridge phase’
must not be confused with a high(er)-density phase in thermodynamic equilibrium with a
low(er)-density phase, the two being separated by an interface. Because (∂�l/∂µ)T <

(∂�b/∂µ)T < (∂�g/∂µ)T one expects intersections {µgl, T }, {µgb, T }, and {µbl, T } to
exist, defined such that �gl = �g[ρg(r)] = �l[ρl(r)], �gb = �g[ρg(r)] = �b[ρb(r)],
and �bl = �b[ρb(r)] = �l[ρl(r)], respectively. Therefore, corresponding pairs of structures
{ρg(r), ρl(r)}, {ρg(r), ρb(r)}, and {ρb(r), ρl(r)} may be perceived as coexisting phases (not
necessarily in thermodynamic equilibrium; see below). In practice, two scenarios have to be
distinguished:

(i) T < Ttr: µbl < µgl < µgb and �bl > �gl > �gb such that for sufficiently low temp-
eratures only gaslike (see figure 2(c)) and liquidlike phases (see figure 2(d)) coexist. The
set of points {µgl, T } defines the coexistence curve µ

gl
x (T ).

(ii) T > Ttr: µbl > µgl > µgb and �bl < �gl < �gb. The set {µgb, T } defines the curve
µ

gb
x (T ) along which gaslike and bridge phases coexist, whereas the set {µbl, T } defines
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the coexistence curve µbl
x (T ) for bridge and liquidlike phases; because µ

gb
x (T ) �= µbl

x (T ),
the separately coexisting bridge phases will generally have different ρb(r). Coexisting
gaslike and liquidlike phases are metastable.

Scenarios (i) and (ii) imply existence of a triple point {µtr, Ttr} at which all three phases
coexist—that is, µbl

x (T ) = µ
gl
x (T ) = µ

gb
x (T ) and �bl = �gl = �gb. Because of (ii)

one also expects two critical points, {µgb
c , T

gb
c } and {µbl

c , T bl
c }, defined such that at �gb,

(∂�g/∂µ)
T =T

gb
c

= (∂�b/∂µ)
T =T

gb
c

and at �bl, (∂�b/∂µ)T =T bl
c

= (∂�l/∂µ)T =T bl
c

. In other

words, ρg(r) = ρb(r) at {µgb
c , T

gb
c } and ρ ′

b(r) = ρl(r) at {µgb
c , T

gb
c } (where ρb(r) �= ρ ′

b(r) in
general).

To determine µ
gl
x (T ), µ

gb
x (T ), and µbl

x (T ) we take advantage of the monotonicity of
(∂�/∂µ)T and compute �g(µ) and �l(µ) for a sufficiently low temperature T  Ttr and
two chemical potentials µ1 < µ2 via the Jacobi–Newton method. Approximating �l(µ) and
�g(µ) in the interval [µ1, µ2] by straight lines permits us to compute a first estimate µgl ≡ µ[1]

of the chemical potential at phase coexistence from �̃g(µ[1]) = �̃l(µ[1]) where we use the
tilde to indicate the linear approximation to the grand potential curves. However, the grand
potentials do not depend linearly on µ as reflected by �g(µ[1]) �= �l(µ[1]), and the initial
guess µ[1] needs to be improved. This can be achieved by considering subintervals [µ1, µ

[1]]
or [µ[1], µ2] depending on whether |µ1 − µ[1]| < |µ2 − µ[1]| or |µ1 − µ[1]| > |µ2 − µ[1]|,
respectively. Approximating in the refined interval both �g(µ) and �l(µ) by straight lines,
as before, permits us to compute an improved estimate µ[2] of the chemical potential at phase
coexistence. The refinement procedure is repeated until |�g(µ[k]) − �l(µ[k])| � 10−7 which
is usually achieved in k = 2–4 refinement steps.

With the final estimate of µgl we compute ρb(r) via the Jacobi–Newton technique and
calculate �b[ρb(r)] from (2) and (3). Again, two scenarios have to be distinguished:

(i) �b > �gl; the bridge phase is metastable. Thus, gaslike and liquidlike phases coexist
along µ

gl
x (T ) and we can repeat the calculation as described for the next temperature

T ′ := T +�T (�T = 0.01). At T ′ the starting solution ρ0
0 (r) for all three phases is taken

to be the corresponding one obtained for the preceding temperature T .
(ii) �b < �gl; the bridge phase is thermodynamically stable in the range µgb � µ � µbl,

and the curves µ
gb
x (T ) and µbl

x (T ) need to be determined separately by the refinement
procedure described above.

As the critical point(s) is (are) approached, the identification of coexisting phases becomes
increasingly difficult because their �(µ)s are nearly identical. Therefore, we refine the
temperature interval such that �T = 2.5 × 10−3 if the difference between the densities
of coexisting phases �ρ � 0.05.

3. Continuous model

3.1. The fluid–substrate potential

The continuous analogue of the lattice-gas model consists of a film composed of spherically
symmetric molecules sandwiched between the surfaces of two solid substrates. The substrate
surfaces are planar, parallel, and separated by a distance sz along the z-axis of the coordinate
system. The substrates are semi-infinite in the z-direction, occupying the half-spaces sz/2 �
z � ∞ and −∞ � z � −sz/2, and are infinite in the x- and y-directions. Each substrate
comprises slabs of two types: strongly adsorbing and weakly adsorbing. The ‘strong’ and
‘weak’ slabs have widths ds and dw/2, respectively, in the x-direction and are infinite in the
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y-direction. If the substrates are aligned as in figure 3 the system is thus periodic in the
x-direction with period sx = ds + dw and its properties are translationally invariant in the
y-direction. In practice we take the system to be a finite piece of the film, imposing periodic
boundary conditions [58] on the planes x = ±sx/2 and y = ±sy/2 where sα (α = x, y) is the
side length of the system in the α-direction. To emphasize the continuous nature of the present
model we introduce different notation as far as the characteristic dimensions are concerned
(i.e., sx ↔ nx , sy ↔ ny , sz ↔ nz, and ds ↔ ns).

ds

sx

δ

Figure 3. A schematic diagram of a simple fluid confined by a chemically heterogeneous model
pore. Fluid molecules (grey spheres) are spherically symmetric. Each substrate consists of a
sequence of crystallographic planes separated by a distance δ� along the z-axis. The surface planes
of the two opposite substrates are separated by a distance sz. Periodic boundary conditions are
applied in the x- and y-directions (see the text).

Substrate atoms forming the two slabs are assumed to be of the same ‘diameter’ σ and
to occupy sites of the face-centred cubic (fcc) lattice (the substrate surfaces are (100) planes)
where the lattice constant � is the same for the atomic species in both strong and weak slabs.
Thus, substrate atoms forming these slabs are distinguished only by their respective strength
of interaction with film molecules. We assume the total potential energy to be a sum of
pairwise-additive Lennard-Jones (LJ) (12, 6) (-type) potentials u(r) (see section 4.1.2). For
the interaction between a pair of film molecules, the potential-well depth ε = εff (i.e., uff(r)).
The nanoscale heterogeneity of the substrate is characterized by ε = εfs (i.e., ufs(r)) for the
interaction of a fluid molecule with a substrate atom in the strong (central) slab, and by ε = εfw

(i.e., ufw(r)) for the interaction of a fluid molecule with a substrate atom in either of the two
weak (outer) slabs (see figure 3). We take εfs/εff = 1.25 and εfw/εff = 10−3.

Since we are concerned with the effects of nanoscale chemical decoration on the behaviour
of a confined fluid, we expect details of the substrate structure not to matter greatly at the atomic
level. Therefore, we adopt a mean-field representation of the interaction of a fluid molecule
with the substrate, which we obtain by averaging the fluid–substrate interaction potential over
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positions of substrate atoms in the x–y plane. The resulting mean-field potential can be
expressed as [50–52]

�[k] = −3π

(
σ

�

)2 ∞∑
m=−∞

∞∑
m′=0

{
(εfw − εfs)

[
�

(
x̃ +

ds

2
− msx,

sz

2
+ m′δ� ± z

)

− �

(
x̃ − ds

2
− msx,

sz

2
+ m′δ� ± z

)]

− εfw

[
�

(
x̃ +

sx

2
− msx,

sz

2
+ m′δ� ± z

)

− �

(
x̃ − sx

2
− msx,

sz

2
+ m′δ� ± z

)]}
(11)

where δ� is the spacing between successive crystallographic planes in the ±z-direction. The
sign is chosen according to the convention + ↔ k = 1 and − ↔ k = 2. In (11) the auxiliary
function � is defined as (see [51] for details)

�(x ′′, z′′) := 21

32
I3(x

′′, z′′) − I4(x
′′, z′′) (12)

where

I3(x
′′, z′′) = x ′′σ 10

9z′′2√R9

[
1 +

8

7
S +

48

35
S2 +

64

35
S3 +

128

35
S4

]
(13)

I4(x
′′, z′′) = x ′′σ 4

3z′′2√R3
[1 + 2S]. (14)

Here R := x ′′2 + z′′2 and S := R/x ′′2. To evaluate the fluid–substrate interaction we set
up a two-dimensional grid and compute � prior to the simulation at the nodes of this grid.
According to the actual position of a fluid molecule (not necessarily coinciding with one of the
nodes), � is calculated during the simulation by bilinear interpolation as detailed in [51, 52].

Because of the chemical decoration of each substrate, a confined fluid can be exposed to
a shear strain by misaligning the substrates in the +x-direction according to

x̃ :=
{

x k = 1

x − αsx k = 2
(15)

where α := δα/sx is a dimensionless number and δα is the magnitude of the relative dis-
placement of the substrates with respect to each other where {α|0 � α � 1

2 } may vary
continuously between its limits (see section 2.1); α = 0 refers to substrates in registry whereas
α = 1

2 if the substrates are out of registry.

3.2. Thermodynamics

We treat the confined fluid as a thermodynamically open system. Hence, equilibrium states
correspond to minima of the grand potential � := F−µN . With the aid of Gibbs’ fundamental
equation [59] one obtains

d� = −S dT − N dµ + Txxsysz dsx + Tyysxsz dsy + Tzzsxsy dsz + Tzxsxsy d(αsx). (16)

In (16), Tαα (α = x, y, z) is a diagonal element of the stress tensor T; Tzx is the shear stress—
that is, the x-component of the force acting on the z-directed area A := sxsy , and αsx is
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the conjugate shear strain. By convention, Tαβ < 0 if the β-component of the force exerted
by the film on the α-directed area points outward. Because the fluid–substrate potential is
translationally invariant in the y-direction, Tzy ≡ 0. According to the definition of T, the
remaining four off-diagonal components Txz, Tyz, Txy , and Tyx vanish since the substrates are
rigid and cannot be compressed or sheared.

From (16) it is evident that � depends on the set {T ,µ, sx, sy, sz, αsx} of natural variables.
Furthermore, since the fluid–substrate potential is translationally invariant in the y-direction,
� is a homogeneous function of degree one in sy provided that T , µ, sx , sz, and αsx are fixed.
Under these conditions, Euler’s theorem applies and one obtains

� = TyyAsy := TyyV fixed T ,µ, sx, sy, αsx (17)

where we take the zero of � to coincide with sy = 0 and V is the volume. Thus, equation
(17) permits us to interpret Tyy as a grand potential density. Equation (17) is useful for disting-
uishing between thermodynamically stable and metastable states realized in grand canonical
ensemble Monte Carlo simulations (see section 4.1.2). However, for this purpose a molecular
expression for Tyy is required. It is given in (29) of [51] where we emphasize that there is no
fluid–substrate contribution because � in (11) does not depend on the y-coordinate of a fluid
molecule—that is, � is translationally invariant in this direction.

4. Results

4.1. Substrates in registry

4.1.1. Lattice gas. The primary result of (1) is the local densityρ(r) ≡ ρ(x, z)of the confined
lattice gas. Because of the discrete nature of the model, ρ(x, z) is defined only at lattice sites.
However, to visualize ρ(x, z) it proves convenient to interpolate between neighbouring sites.
Figure 2(a) shows the typical structure of a bridge phase, namely a high(er) density over the
strongly attractive portions of the substrate alternating in the x-direction with a low(er)-density
regime over the weakly attractive ones. In the z-direction high(er)- and low(er)-density portions
of the fluid span the entire space between the substrates with comparatively little variation of
ρ(x, z) along x = constant cuts. Under suitable thermodynamic conditions a bridge phase
may condense and form a liquidlike phase. Alternatively, a bridge phase may evaporate leaving
behind a gaslike phase.

Because of the different microscopic structures, one anticipates a rather complex phase
diagram for a lattice gas confined between chemically decorated substrates which we determine
according to the procedure described in section 2.2. Figure 4(a) shows plots of the coexist-
ence curves in µ–T projection for various degrees of confinement (i.e., nz). The horizontal
line represents the bulk coexistence curve µ

gl
x (T ) = µc (see (6)) which we include for

comparison. Along µ
gl
x (T ), gas and liquid (bulk) phases coexist. Thus, the thermodynamic

states )l = {(µ, T )|µ > µc, T � Tc} belong to the one-phase liquid regime whereas the states
)g = {(µ, T )|µ < µc, T � Tc} pertain to the one-phase gas region. Consequently, µgl

x (T ) is
a line of first-order phase transitions terminating, of course, at T = Tc.

More subtle effects are observed if the lattice gas is confined by solid substrates, as plots
in figure 4(a) show. For sufficiently large nz, chemical decoration of the substrate does not
matter but confinement effects prevail. For example, for nz = 15 the critical point is shifted
to (µgl

c , T gl
c ) where T

gl
c and µ

gl
c are lower than the bulk values Tc and µc. Moreover, µgl

x (T ) is
no longer parallel with the temperature axis as in the bulk.

If nz decreases, a bifurcation appears at T = Ttr . Only (inhomogeneous) liquidlike and
gaslike phases coexist along the line µ

gl
x (T ) (T < Ttr). At T = Ttr the latter two are in
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Figure 4. (a) Coexistence curves in T –µ projection for various confined lattice gases as functions
of substrate separation nz indicated in the figure (α = 0, nx = 14, ns = 8, εfs = 1.4, εfw = 0.3);
——: µ

gl
x (T ); – – –: µ

gb
x (T ); — · —: µbl

x (T ). The corresponding bulk coexistence curve is
also shown. (b) As (a), but on an enhanced scale showing only the coexistence-curve branches
in the grey box in (a); • marks the fixed thermodynamic state of the confined fluid T = 1.325,
µ = −3.0235.

thermodynamic equilibrium with a bridge phase. For T > Ttr the coexistence curve consists
of two branches. The upper one, µbl

x (T ), can be interpreted as a line of first-order phase
transitions involving liquidlike and bridge phases whereas the lower one, µgb

x (T ), corresponds
to bridge and gaslike phases, respectively. Both branches terminate at their respective critical
points {µbl

c , T bl
c } and {µgb

c , T
gb

c }. The entire coexistence curve µx(T ) of the lattice gas is



Shear-induced phase transitions 1581

formed by µ
gl
x (T ), µ

gb
x (T ), µbl

x (T ), and the point {µtr, Ttr}. Phase diagrams of this general
type have to be expected also in cases where the substrate is geometrically instead of chemically
corrugated [60]. We have verified numerically that

lim
T →T

ij
c

�ρ̄ ij
x ∝ (T ij

c − T )βij � 0 (18)

where�ρ̄
ij
x is the average-density difference between coexisting phases i and j . For the critical

exponents we obtain βgb � βbl � 1
2 within numerical accuracy for our three-dimensional

lattice-gas model (see figure 1, section 2.1), indicating that the mean-field character is preserved
at both critical points.

Comparing in figure 4(a) coexistence curves for nz = 8 and 9 it is evident that the
triple point is lowered further the more severe the confinement is, that is the smaller nz

is. Simultaneously, µbl
c increases whereas µ

gb
c decreases such that the one-phase region for

bridge phases widens. Because of these rather complex variations of µx(T ) with nz it is
conceivable that for a fixed thermodynamic state {µ, T } the confined phase is gaslike initially
if nz is sufficiently large. Upon lowering nz, this gaslike phase may condense to a bridge
and eventually to a liquidlike phase at even smaller nz. This is illustrated in figure 4(b) for a
specific thermodynamic state determined by T = 1.325 and µ = −3.0235. From the plot it is
clear that for nz � 10 the confined fluid is gaslike because its thermodynamic state lies below
all branches of µx(T ). As the substrate separation decreases, however, one notices from the
plot corresponding to nz = 9 that the same thermodynamic state now pertains to the one-phase
regime of liquidlike phases; that is, it falls above all branches of µx(T ). Thus, in going from
nz = 10 to nz = 9 the confined lattice gas underwent a first-order phase transition from a
gaslike to a liquidlike phase. For an even smaller substrate separation nz = 8, one sees from
figure 4(a) that the triple point has shifted to rather small {µtr, Ttr} and that the one-phase region
of bridge phases has widened considerably. Thus, as can be seen from the parallel figure 4(b),
the thermodynamic state eventually belongs to the one-phase region of bridge phases where
it remains for all smaller nz. Hence, as one decreases the substrate separation from nz = 9 to
nz = 8 an originally liquidlike phase is transformed into a bridge phase during a first-order
phase transition.

A general feature of first-order phase transitions is release (or absorption) of latent heat
which may be cast quantitatively in terms of the (molar) enthalpy of vaporization

�hij
v := T (si

x − sj
x ) � 0 (19)

of coexisting phases i and j . In (19), si
x and s

j
x are the associated molar entropies at coexistence.

From (3) we deduce

si
x = − kB

nxnynz

∑
r

{
ln ρi

x(r) +
1 − ρi

x(r)

ρi
x(r)

ln[1 − ρi
x(r)]

}
(20)

whereρi
x(r) is the local density of phase i at coexistence. Thus, �h

ij
v is a measure of the ‘width’

of the coexistence curve for phases i and j in T –ρ projection. According to this interpretation
it is not surprising that �h

gl
v for the bulk lattice gas in figure 5 decreases with increasing T ,

where �h
gl
v = 0 for T = Tc because gas and liquid phases become indistinguishable at the

critical point. A parallel plot for the confined lattice gas shows that �h
gl
v is smaller than its

bulk counterpart for T � Ttr because densities of gaslike and liquidlike phases are closer to
each other under confinement. For T = Ttr , �h

gl
v = �h

gb
v +�hbl

v as it must. For T > Ttr , �h
gl
v

is no longer defined for the confined lattice gas and �h
gb
v and �hbl

v decrease with increasing
T , eventually vanishing separately at the respective critical temperatures T

gb
c and T bl

c (see
figure 5).
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Figure 5. Molar enthalpy of vaporization �h
ij
v as a function of temperature T ; curves are shown

for bulk (♦), i = g, j = l, and confined lattice gas (α = 0, nx = 14, ns = 6, nz = 7, εfs = 1.6,
εfw = 0.4) where: i = g, j = l (•); i = g, j = b (◦); i = b, j = l (�).

4.1.2. Continuous model. Parallel results for the continuous model were obtained assuming
the confined fluid to be composed of argon atoms. As before for the lattice gas we express all
quantities in the customary dimensionless (i.e., ‘reduced’) units. However, here we deviate
from the lattice gas case by expressing length in units of σ .

Equilibrium properties of the confined fluid are obtained in Monte Carlo simulations
in the grand canonical ensemble employing the algorithm proposed by Adams [61]. These
simulations yield a sequence of M configurations {rN

k }k=1,...,M minimizing �. Disregarding
details, this procedure is therefore equivalent to solving (1). However, instead of using in the
simulations the ‘full’ Lennard-Jones (LJ) (12, 6) potential (see section 3.1) to describe the
fluid–fluid interaction, we employ a ‘shifted-force’ version defined such that the LJ (12, 6)
potential and its first derivative vanish at the cut-off radius rc = 2.5 [58]. As pointed out
in [62], the shifted-force potential is advantageous because no long-range correction has to be
applied to the fluid–fluid interaction since uff vanishes by definition for all r � rc. This is
particularly important in the present case where the Monte Carlo algorithm involves changes
in the number of molecules [61] because µ is one of the thermodynamic state variables. The
associated density change of ±1/N between pairs of consecutive trial configurations would
require an analytic energy correction during the generation of the Markov chain as far as the
full (i.e., infinitely long-range) LJ (12, 6) potential is concerned. While explicit expressions
for correction terms are available for the present slit-pore geometry [63], their application is
not unproblematic under all circumstances [64].

Depending on the thermodynamic state, a fluid in the continuous model may form a gas-
like, liquidlike, or bridge phase similar to the confined lattice gas (see figure 2, section 4.1.1).
Typical structures of these three phases are illustrated by the plots in figure 6. As in figure 2(a)
the plot of the local density ρ(x, z) in figure 6(a) shows a typical bridge phase. For α = 0,
ρ(x, z) is symmetric with respect to x = 0 and z = 0 as it must be (see figure 6(a)). As in the
lattice-gas model, a bridge phase may condense or evaporate upon varying the thermodynamic
conditions. The microscopic structure of liquidlike and gaslike phases in the absence of a
shear strain is illustrated by the plots in figure 2(b) and figure 2(c) of [52]. From the plot in
figure 6(a) one notices that ρ(x, z) is a nonmonotonic function of z along any cut x = constant
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in the high(er)-density regime. Nonmonotonicity of the local density is more clearly visible in
the plot of contour lines of ρ(x, z) (i.e., lines along which ρ(x, z) = constant) in the parallel
figure 7(a) showing a sequence of ‘islands’ in the z-direction surrounded by a closed line of
lower density. This indicates that the enclosed higher-density regimes of bridge phases are
well separated by a distance �z � 1 between centres of neighbouring islands. Thus, it is
plausible to associate these islands with molecular strata parallel with the confining substrates.
Stratification reflects substrate-mediated intermolecular correlations. It is therefore sensible
that the parallel plot in figure 2(a) does not exhibit stratification because such correlations
are explicitly disregarded at mean-field level (see (A.2)). With increasing distance from a
substrate, stratification diminishes in the continuous model (see figure 6(a)) due to the decay
of the fluid–substrate potential. This is reflected by a declining amplitude of oscillations in
ρ(x, z) with increasing distance from a substrate which can also be seen in figure 7(a) where
the islands shrink in the transverse (i.e., x-) direction as |z| → 0.

In the continuous model a confined fluid may undergo phase transitions between gaslike,
liquidlike, and bridge phases similar to those observed for the confined lattice gas in sec-
tion 4.1.1. To demonstrate the close correspondence between the two models as far as the
phase behaviour is concerned we calculate the average overall density

ρ̄ := 1

sxsz

∫ sx/2

−sx/2
dx

∫ sz/2

−sz/2
dz ρ(x, z) = 〈N〉

V
(21)

for various substrate separations sz. The plot of ρ̄ in figure 8 exhibits two discontinuities. From
a parallel analysis of ρ(x, z), the one around sz � 8.2 turns out to correspond to a first-order
phase transition involving gaslike and liquidlike phases whereas the one at sz � 7.5 relates to
a transition between a liquidlike phase and a bridge phase (upon reducing sz). Therefore, the
sequence of phase transitions in figure 8 resembles closely the scenario observed for the lattice
gas in figure 4(b). However, depending on the precise chemical structure of these surfaces,
different phase transitions are possible (see figure 10 in [52]), which can also be explained
qualitatively within the framework of the mean-field lattice gas. Oscillations of ρ̄ in figure 8
over the range 2 � sz � 6 reflect stratification of the confined fluid as described above.

However, investigations of phase transitions by means of Monte Carlo simulations in the
grand canonical ensemble are frequently plagued by metastability—that is, the existence of a
sequence of configurations {rN

k }k=1,...,M corresponding only to a local minimum of � where
M can be quite substantial. In other words, the ‘lifetime’ of a metastable thermodynamic state
can be large compared with the time over which the microscopic evolution of the system can
be pursued on account of limited computational speed. The origin of metastability is the lack
of ergodicity in the immediate vicinity of a first-order phase transition which arises on account
of the microscopically small systems employed in computer simulations [65]. Metastability
is manifest as hysteresis in a sorption isotherm (like the one plotted in figure 8)—that is, a
range of finite width �sz around the true transition point over which for the same T and µ,
ρ̄(sz) is a double-valued function. To distinguish the metastable from the thermodynamically
(i.e. globally) stable phase one needs to compare � for the two states pertaining to different
branches of the sorption isotherm at the same µ and sz (see (17)). The one having lowest � is
the globally stable phase; the other one is only metastable. In figure 8 we plot only data for
thermodynamically stable phases identified according to this rationale.

4.2. The impact of shear strain

4.2.1. Lattice gas. The preceding section clearly illustrates the complex phase behaviour
that one has to expect if fluids are confined between chemically decorated substrate surfaces.
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Figure 6. As figure 2, but for the continuous model. The plots show two periods of ρ(x, z) in the
x-direction because of the periodic boundary conditions: (a) unsheared bridge phase, αsx = 0.0;
(b) sheared bridge phase, αsx = 7.5; (c) gaslike phase, αsx = 10.0; (d) liquidlike phase,
αsx = 10.0. The plots in (c) and (d) correspond to coexisting phases. In all cases T = 0.7,
µ = −8.15, sx = 20.0, ds = 10.0, and sz = 8.0.

This is particularly evident for the lattice gas where the relative simplicity of F permits one
to calculate µx(T ) which is determined by the three different length scales present in our
model. In addition to the one set by the range of interactions between lattice-gas molecules
(i.e., �lg), another one relates to confinement (i.e., nz) and is already present if the substrates
are chemically homogeneous. It causes:

(i) a critical-point shift to {µgl
c , T

gl
c } (εfs = εfw > εff ) lower than the bulk {µc, Tc};

(ii) µ
gl
x (T ) not to be parallel with the temperature axis.

The third length scale, introduced by chemical decoration of the substrate, is set by ns (or,
equivalently, nx−ns), exceeding �lg by almost an order of magnitude for the various coexistence
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Figure 6. (Continued)

curves plotted in figure 4. The consequences of this third length scale are:

(i) existence of bridge phases as a new phase in the ordinary thermodynamic sense
(ii) two independent critical points {µgb

c , T
gb

c } and {µbl
c , T bl

c }.
Figure 4 already showed that the precise form of µx(T ) is caused by an interplay of these
different length scales.

To further elucidate this interplay it seems interesting to expose the lattice gas to a shear
strain by varying α (see (5)). Comparing the plots in figure 2(a) and figure 2(b) illustrates
the effect of a shear strain on the structure of a typical bridge phase. However, depending
on the thermodynamic state a bridge phase will sustain only a maximum shear strain but will
eventually be either ‘torn apart’ and undergo a first-order phase transition to a gaslike phase
(see figure 2(c)) or condense and form a liquidlike phase (see figure 2(d)). The corresponding
coexistence curves µx(T ) plotted in figure 9 show that increasing α from its initial value



1586 H Bock and M Schoen

-4

-2

0

2

4

-10 0 10 20 30

z

x

(a)

-4

-2

0

2

4

-10 0 10 20 30

z

x

(b)

Figure 7. Contour lines ρ(x, z) = 0.10 (— · —), 0.75 (——) corresponding to the plots in figure 6.

of zero causes the triple point to shift to higher Ttr and µtr . Simultaneously, the one-phase
region of the bridge phases shrinks. The one-phase regime of bridge phases may, however,
vanish completely for some α < αmax depending on substrate separation (i.e., nz), chemical
corrugation (i.e., ns/nx), or strength of interaction with the chemically different parts of the
substrate (i.e., εfw, εfs). Notice that for the special case αmax = 1

2 (i.e., nx even) the one-phase
region of bridge phases must vanish in the limit α = αmax for symmetry reasons (see (4), (5)).
In addition, figure 9 shows that critical temperatures T bl

c and T
gb

c depend only weakly on the
shear strain unlike µbl

c and µ
gb
c , such that the critical points are essentially shifted upwards and

downwards, respectively, as α increases.
Consider now a specific isotherm Tx = 1.25 in figure 9, intersecting with different

branches of the (same) coexistence curve µx(T ) at different chemical potentials. According
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Figure 7. (Continued)

to the definition of µx(T ), each intersection corresponds to a pair of (separately) coexisting
phases. For example, at µ

gb
x (Tx) � −3.053 and α = 0 a gaslike phase coexists with a

(more dilute) bridge phase whereas a (denser) bridge phase coexists with a liquidlike phase
for µbl

x (Tx) � −3.029. Because the one-phase region of bridge phases shrinks with α (see
figure 9), the ‘distance’ �µx(Tx) := |µgb

x (Tx) − µbl
x (Tx)| → 0 the larger α becomes, that is

with increasing shear strain. From the plot in figure 9 it is clear that a shear strain exists such
that �µx = 0, that is Tx � Ttr(αnx). For this and larger shear strains, only a single intersection
remains, corresponding to coexisting gaslike and liquidlike phases (see figure 9).

4.2.2. Continuous model. If the confined fluid in the continuous model is exposed to a shear
strain, it undergoes structural transformations similar to the ones just discussed for the lattice
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7 .

gas. For example, a bridge phase can sustain a shear strain (see figure 6(a), figure 6(b)).
Comparing the corresponding contour plots in figure 7(a) and figure 7(b), one sees that as a
result of the applied deformation, centres of molecular strata are displaced in the +x-direction.
If the shear strain exceeds a certain threshold one expects from the lattice-gas results (see
figure 9) the bridge phase to undergo a first-order phase transition. Depending on the ‘position’
of the thermodynamic state with respect to µ

gb
x (T ) and µbl

x (T ), either a gaslike or a liquidlike
phase may form as a result. Both situations are realized, as plots in figure 6(c) and figure 6(d)
reveal. Contour plots of ρ(x, z) in figure 7(c) show that a typical gaslike phase consists of
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isolated and stratified columns of fluid (because ρ(x, z) is translationally invariant in the y-
direction) stabilized by the strongly attractive parts of the substrate. For a liquidlike phase (see
figure 7(d)) these columns are connected through a stratified portion of fluid centred on z = 0
(see figure 6(d)).

Because of the similarity between the lattice-gas calculations and the Monte Carlo
simulations for the continuous model, it seems instructive to study the phase behaviour in
the latter if the confined fluid is exposed to a shear strain. This may be done conveniently by
calculating ρ̄ as a function of µ and αsx . Because of the microscopic size of the simulation
cell, results are again affected by metastability in the immediate vicinity of a phase transition.
To identify coexisting phases on the sorption isotherm we adopt the procedure described above
in section 4.1.2.

For sufficiently low µ one expects a gaslike phase to exist along a subcritical isotherm
T = {(µ, T )|µtr < µ < min(µgb

c , µbl
c ), Ttr < T < min(T gb

c , T bl
c ), T = constant} (see

figure 9). At an intersection between T and µ
gb
x (T ), the gaslike phase will undergo a

spontaneous transformation to a bridge phase. In a corresponding plot of ρ̄(µ) one should see a
discontinuous jump to a higher density. Eventually, another intersection between T and µbl

x (T )

occurs and a second discontinuous jump to an even higher value of ρ̄(µ) should be visible. Both
of these transitions are indeed observed in figure 10 for αsx = 0, µ � −8.40, and µ � −7.98,
respectively. Notice that in figure 10, µbl

x for αsx = 0.0 exceeds its bulk counterpart µbulk
x ;

that is, for µbl
x the corresponding bulk phase is liquid. This can be rationalized by noting that

the low(er)-density part of a bridge phase is predominantly involved in this second transition.
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Figure 10. Sorption isotherms ρ̄(µ) from grand canonical ensemble Monte Carlo simulations
(continuous model); ◦, – – –: αsx = 0.0; •, - - - -: αsx = 2.5; �, · · · · · ·: αsx = 5.0; �,
— · —: αsx = 7.5; �, — · · —: αsx = 10.0. Also shown are corresponding bulk data (♦, ——).
Results were obtained for T = 0.7, sx = 20.0, ds = 10.0, and sz = 8.0.
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Recall also that this part of a bridge phase is stabilized by the weak portions of both (perfectly
aligned) substrates characterized by εfw  εff . Hence, the second first-order transition is
inhibited rather than supported by the substrates (with respect to the bulk) because of the
dominating repulsive interaction of a fluid molecule with the weak part of the substrate.

If a shear strain is applied, the region of overlap of the weak substrate parts in thex-direction
shrinks (see (15)) such that a fluid molecule located at {x|ds/2 � |x| � sx/2, αsx = 0.0} is
exposed to a stronger net attractive fluid–substrate interaction. Consequently, one expects
an associated shift of µbl

x to lower values. The plot in figure 10 confirms the expectation.
In addition, figure 9 shows that the one-phase region shrinks because Ttr shifts to higher
temperatures and because the slope of the coexistence lines does not change much. The plot in
figure 9 therefore suggests that for α > 0 the two discontinuities in ρ̄(µ) approach each other
with the result that that the branch of ρ̄(µ) pertaining to bridge phases becomes narrower with
increasing αsx . This effect is indeed visible in figure 10 where the width of the intermediate-
density branch of ρ̄(µ) (corresponding to thermodynamically stable bridge phases) diminishes
from |�µ| � 0.42 (αsx = 0.0) to |�µ| � 0.14 (αsx = 7.5). Finally, if the shear strain is large
enough, the lattice-gas results in figure 9 suggest that for a given temperature T ∗, Ttr(αsx) > T ∗

for sufficiently large shear strains (see the curve for α = 2
7 in figure 9). Hence, under these

circumstances one would expect ρ̄(µ) to exhibit just a single discontinuity relating to a phase
transition between gaslike and liquidlike phases. The plot in figure 10 for αsx = 10 confirms
this prediction.

5. Discussion and conclusions

In this paper we discuss the phase behaviour of fluids confined to spaces of microscopic to
mesoscopic dimensions by chemically corrugated solid substrates. The substrates consist of
alternating portions of weakly and strongly adsorbing solid. We employ lattice-gas models
at the mean-field level of description (see figure 1) and Monte Carlo simulations in the grand
canonical ensemble (see figure 3) to investigate both the microscopic structure of the confined
(‘simple’) fluid and its relation to the overall phase behaviour. Since the substrates themselves
are chemically patterned, they offer the possibility of exposing the confined fluid to a shear
strain. Therefore, the key issue of this work is the impact of shear strain on first-order phase
transitions in the confined fluid. Our results can be summarized as follows:

(i) Depending on the thermodynamic state, a fluid confined between chemically decorated
substrates may form a gaslike, liquidlike, or bridge phase (see figure 2, figure 6, figure 7).

(ii) A triple point {µtr, Ttr} exists at which all three phases coexist. For T < Ttr , gaslike and
liquidlike phases are in thermodynamic equilibrium with each other along the coexistence
curve µ

gl
x (T ). For T > Ttr , a gaslike phase coexists with a bridge phase along µ

gb
x (T )

whereas a bridge phase coexists with a liquidlike phase independently along µbl
x (T ). Both

coexistence curves terminate at their respective critical points {µgb
c , T

gb
c } and {µbl

c , T bl
c }

(see figure 4(a)).
(iii) In the absence of a shear strain (i.e., for α = 0):

(a) From the lattice-gas calculations one expects two first-order phase transitions if µ is
varied along an isotherm T. The one at lower µ involves a gaslike and a bridge phase
whereas a transition from a bridge to a liquidlike phase is expected at higher µ (see
figure 9). In the continuous model these transitions are manifest as discontinuities in
ρ̄ separated by a ‘distance’ �µ (see figure 10).

(b) Lattice-gas calculations reveal that gas–liquid (i.e., µgl
x (T )), gas–bridge (i.e., µgb

x (T )),
and bridge–liquid (i.e., µbl

x (T )) branches of the coexistence curve as well as the
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triple-point location {µtr, Ttr} depend on the substrate separation in a complex manner
(see figure 4(a)). Thus, if the thermodynamic state is chosen suitably, one expects two
first-order phase transitions upon reducing sz at constant T and µ. The one at larger
sz relates to condensation of a gaslike to a liquidlike phase which, in turn, undergoes
a subsequent transition to a bridge phase at smaller sz (see figure 4(b)) in accord with
Monte Carlo results for the continuous model (see figure 8).

(iv) With exposure to shear strain (i.e., for α �= 0):

(a) In the lattice-gas model Ttr increases with α. Simultaneously, µ
gb
x (T ) and µbl

x (T )

become shorter such that the one-phase region of bridge phases shrinks (see figure 9).
This effect is also detected in Monte Carlo simulations of the continuous model
where the ‘distance’ �µ between the discontinuities in ρ̄ diminishes (T > Ttr(αsx);
see figure 10).

(b) If for a given temperature T ∗ the shear-strain-induced shift of Ttr(αsx) is such that
T ∗ < Ttr(αsx), the lattice-gas calculations suggest a single first-order transition
involving only gaslike and liquidlike phases (see figure 9). Again this notion is
confirmed by the parallel Monte Carlo data (see figure 10).

(c) A point ) = {(µ, T )|µgb
x (T ) < µ < µbl

x (T ), Ttr < T < min(T gb
c , T bl

c )} representing
a thermodynamic state in the one-phase region of bridge phases may be located rel-
ative to the coexistence lines µ

gb
x (T ) and µbl

x (T ) for α = 0 such that upon increasing
α the bridge phase may undergo a first-order phase transition and form either a gaslike
or a liquidlike phase (see figure 2, figure 6, figure 7).

The qualitative similarity between the phase behaviour of fluids in the present, rather regular
model and that reported for disordered porous media [60] may suggest that phenomena
observed here could also be present in experimental systems. For example, if a fluid condenses
only in certain parts of a mesoporous medium on account of its structural or chemical
heterogeneity, one would expect sorption isotherms exhibiting several discontinuous ‘steps’
similar to the ones in figure 10. Upon decreasingT , the locations of these discontinuities should
approach each other, with only a single one remaining for sufficiently low T . Alternatively,
one may measure calorimetrically the latent heat associated with the various first-order phase
transitions. This should be feasible because our lattice-gas results in figure 5 show that,
compared with those for the bulk, the molar enthalpies of vaporization of confined phases are
not drastically smaller.

The mean-field lattice gas is a convenient simple, yet not entirely unrealistic statistical-
physical model of a fluid (i.e., gas or liquid). Because of its apparent simplicity it is relatively
easy to construct entire phase diagrams numerically even if the present anisotropic and local
lattice-gas model is involved. In Monte Carlo simulations, on the other hand, one obtains results
for a given model of (in principle) arbitrary complexity essentially in a first-principles fashion.
The disadvantage is that, compared with the case for the mean-field lattice gas, a determination
of phase diagrams for more realistic models in these simulations is computationally much more
demanding. We notice that powerful Monte Carlo methods like the histogram-reweighting
technique [66] exist by which first-order phase transitions can be studied efficiently. However,
it seems worthwhile emphasizing that the focal point of this study is not calculating complete
phase diagrams by Monte Carlo methods. Rather, we are interested in finding out to what
extent the simplistic mean-field lattice gas provides a realistic model of fluids confined between
chemically decorated substrate surfaces, since we plan to extend the present study to confined
binary mixtures in the near future. In the latter context the lattice gas should be useful to
assist the interpretation of parallel computer simulations where the exploration of the vast
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parameter space is inevitably limited. In the light of this study a combination of simulations
and lattice-gas calculations at mean-field level is expected to be highly profitable.

Acknowledgments

We thank Professor R Evans (University of Bristol) for helpful discussions and insightful
comments concerning the formal treatment of the mean-field lattice gas from which
the appendix of this paper emerged. We are grateful to the Sonderforschungsbereich
448 ‘Mesoskopisch strukturierte Verbundsysteme’ for financial support. Two anonymous
referees are acknowledged for helpful comments as is the Konrad-Zuse-Zentrum für
Informationstechnik for a generous allotment of computer time.

Appendix A. Grand potential functional for an inhomogeneous mean-field lattice gas

Here we present a derivation of (2) and (3) appearing in section 2.1. Consider N classical
spins σ(r) = ±1 on a three-dimensional lattice where the vector r specifies a particular site.
The pairwise-additive interaction between spins and between a spin and an external magnetic
field is described by an Ising (-type) model where the Hamiltonian is given by

HI = −
∑

r

σ(r)

[
J

∑
r′

′
σ(r′) + H(r)

]
=: −

∑
r

Heff(r; {σ(r′)})σ (r). (A.1)

In (A.1), coupling constant J determines the strength of interaction between a pair of spins, and
the prime attached to the summation sign signals that only nearest-neighbour spins interact. We
deviate from the classical Ising model by incorporating a local (rather than a constant) magnetic
field H(r). The term in brackets may thus be interpreted as an effective local magnetic field
Heff exerted on σ(r) due to H(r) and the neighbouring spins. Therefore, Heff(r; {σ(r′)})
depends on the actual configuration {σ(r′)} of nearest-neighbour spins.

To simplify (A.1) we adopt a mean-field approximation assuming that

σ(r′) → 〈σ(r′)〉 ≡ m(r′)
Heff(r; {σ(r′)}) → H̃eff(r; {m(r′)}) (A.2)

where the locally constant magnetization m(r′) in thermodynamic equilibrium is a continuous
function on the interval [−1, +1] and the effective local magnetic field in the mean-field
approximation, H̃eff(r; {m(r′)}), is independent of {σ(r′)} but depends on the set of (locally
constant) magnetizations at neighbouring lattice sites. Henceforth we shall therefore drop
{m(r′)} as an implicit argument of H̃eff to simplify the notation. Thus, at the mean-field level
HI = ∑

r h(r) where the single-spin Hamiltonian is given by

h(r) = −H̃eff(r)σ (r). (A.3)

Based upon (A.2), a molecular expression for m(r) is obtained from the statistical-physical
expression (canonical ensemble):

m(r) =
( ∑

σ(r)

σ (r) exp[−h(r)/kBT ]

)/( ∑
σ(r)

exp[−h(r)/kBT ]

)

= tanh[H̃eff(r)/kBT ] = tanh

{
1

kBT

[
H(r) + J

∑
r′

′
m(r′)

]}
. (A.4)



Shear-induced phase transitions 1593

Equation (A.4) can be rewritten in lattice-gas rather than magnetic language, employing the
following identifications [55]:

J = εff

4

H(r) = 1

2

[
µ − εff

2
− �(r)

]
m(r) = 2ρ(r) − 1

(A.5)

where the local density is defined on the interval [0, +1]. Equations (A.4) and (A.5) give

kBT ln
ρ(r)

1 − ρ(r)
− µ + �(r) − εff

∑
r′

′
ρ(r′) = 0 (A.6)

which may be perceived as the Euler–Lagrange equation resulting from (1). Thus, (2) and
(3) are obtained directly by integrating (A.6) formally where, of course, �[0] = 0 is also
used. Equation (A.6) was presented earlier by Bruno et al [67], Röcken and Tarazona [49],
and us [52] with (2) and (3) as starting points without further justification.

Evans has pointed out that an alternative way of deriving an expression for S in (3) is that
of considering an ensemble of N noninteracting spins (J = 0) subjected to H(r) [68]. In this
case h(r) ≡ H(r) and we obtain (A.6) for εff = 0 which is now exact. Formal integration
of this latter expression yields S in (3) (when summed over r). Together with a mean-field
treatment of the spin–spin interaction (leading to a mean-field U), F as presented in (3) is
eventually obtained.
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